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Metallorganic chemical vapour deposition of AI203 from AI (O-63H7)  3 via pyrolysis at low 
( ,-~ 280 ~ temperature was investigated with the goal of producing high quality AI203/p-lnP 
(1 0 O) and AI203/p-Si (1 00) interfaces. Ellipsometer measurements of AI203 have determined 
the refractive index of the film to be about 1.55. Room temperature capacitance-voltage 
measurements were used to characterize the electrical properties of the structures after metal 
gate electrodes have been deposited. Low temperature conductance-voltage measurements 
were also carried out to investigate the quality of the AI203/InP interfaces. The interface state 
densities AI203/p-lnP and AI203/p-Si determined from deep-level transient spectroscopy were 
approximately 1012 eV -1 cm -2 and 1011 eV -1 cm -2. 

1. I n t r o d u c t i o n  
Rapid advances in growth technology of metall- 
organic chemical vapour deposition (MOCVD) and 
molecular beam epitaxy (MBE) have made possible 
the fabrication of several new types of metal- 
insulator-semiconductor (MIS) systems with III-V 
compound semiconductor substrates [1]. The applica- 
tion of GaAs-MIS capacitors using several kinds of 
insulators has not been very successful so far due to 
the pinning of the Fermi level near midgap which is 
caused by a huge density of interface states [2]. How- 
ever, InP MIS capacitors are particularly interesting 
due to their applications in high-speed digital circuits 
and high-frequency power amplification I-3-5]. Fur- 
thermore, since the Fermi level in the case of the MIS 
capacitors can be moved nearly across the whole 
bandgap, both inversion and accumulation can be 
achieved [63. 

Many groups have investigated SiO 2 [7-9] and 
Si3N 4 [t0, 11] as possible deposited insulators for 
InP-MIS applications. However, since the deposition 
temperature must be kept below the InP decomposi- 
tion temperature [12], in this study, for the fabrication 
of insulator gates, AIzO 3 was deposited on p-type InP 
(100) and Si (100) by MOCVD at about 280~ 
[1, 13, 14]. Also, since much information is already 
available about insulator/Si interface structures [153, 
A1203 was also deposited on p-Si (100) substrates. 
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There is currently much interest in heteroepitaxial 
A1203 films on Si (100) by low pressure chemical 
vapour deposition (LPCVD) [16] and metallorganic 
molecular beam epitaxy (MOMBE) [17] due to the 
long-range goal of three-dimensional integrated cir- 
cuits, and in epitaxial thin films of YBa2Cu30 7 grown 
successfully on A1203{ 1012} by a laser ablation tech- 
nique 1-183. 

To remove the native oxide layer prior to depos- 
ition of the A1203 gate insulator, the HC1 vapour 
etching technique [18, 19] was employed at 200 ~ for 
2 rain. Ellipsometer measurements were carried out to 
determine the refractive index of the A1203, and room 
temperature capacitance-voltage (C-V) and low tem- 
perature conductance-voltage (cy-V) measurements 
were performed to investigate electrical properties for 
InP-MIS and Si-MIS. Also, deep-level transient spec- 
troscopy (DLTS) measurements were used to deter- 
mine interface state densities at A1203/InP and 
A12Oa/Si structures. 

2. Experimental procedure 
The carrier concentrations of p-InP and p-Si sub- 
strates with (100) orientation used in this experiment 
are 1 x 1014 c m  - 3  and 1 x 10 -15 cm -3, respectively. 
After InP substrates were alternately degreased in 
warm acetone and trichloroethylene three times, they 
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Figure 1 Schematic diagram for the in situ HC1 vapour etching and A1203 deposition. 
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Figure 2 Capacitance voltage curves dependent on various frequencies of A1/A12Oa/Si-MIS capacitor. Sweep rate = 10 mV s -1. 

were etched in Br-methanol  solution mechanochemi- 
cally, rinsed in deionized water thoroughly, and 
etched in a mixture of H/SO2, H 2 0 2  and H 2 0  (4:1:1) 
at 40 ~ for 10 min. As soon as the etching process was 
finished, the wafer was put on a graphite heater in the 
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M O C V D  chamber, and the chamber was evacuated to 
1.333 x 10-1 Pascal by a mechanical pump. The useful 
vapour  etching methods for the InP involve the HC1 
reaction techniques which are used in vapour  phase 
epitaxial growth technology for I I I - V  compound 



semiconductors. In this case, the reaction chamber can 
be used for not only the HC1 vapour etching, but also 
for A1203 insulator deposition. The schematic dia- 
gram is shown in Fig. 1. 

Prior to the HC1 vapour etching, the residual gas 
inside the chamber was purged with pure Ar gas for 
approximately 1 h. The HC1 vapour etching was car- 
ried out in an Ar atmosphere containing pure HCI gas 
with a flow rate of about 200 ml min-  t at 200 ~ for 
2 rain. The etch rate of the HC1 vapour etching on InP 
(100) substrate carried out at 200 ~ was estimated as 
5 x 104 nm min-  1. After the HC1 vapour etching was 
completed, pure Ar gas removed the surrounding HC1 
vapour inside the chamber for 30 min, and the A120 3 
gate insulator was  deposited on the polished InP 
substrates in the same chamber with an Ar flow rate of 
about 50mlm in  -~ at 250-300~ Also, for com- 
parison with a well known Si-MIS, the AlzO3 gate 
insulator was also deposited on the clean p-Si sub- 
strates using similar methods. In this process, A1 
(O--C3H7) 3 was decomposed into A1203, C3H7OH 
and C3H 6. The C3HTOH and C3H 6 were removed 
with Ar gas, while the A1203 was deposited on the 
substrates. The chemical reaction by pyrolysis in the 
procedure is given by the following equation: 

2[A1 (O-C3H7)3]  AI203 + 3C3H7OH 

+ 3C3H 6 (1) 

Device processing involved fabrication of an array of 
A1 metal gates on the A120 3 surface and A u ~ n  ohmic 
contact to the bulk p-type InP substrates for the C -V  
measurements dependent on various frequencies. Var- 
iable-frequency C-V  and DLTS measurements were 

performed by operating the 1 MHz capacitance meter 
in conjunction with a lock-in amplifier and a pulse 
generator. Capacitively coupled conductance-voltage 
(or-V) measurements at 4.2 K were also carried out. 

In order to investigate the possibility of the MIS 
capacitor using the A120 3 layer as a gate insulator, 
A1/A1203/Si-MIS grown with an Ar gas flow rate of 
about 60 ml m i n - t  at 280 ~ for 12 min was charac- 
terized by C V measurements dependent on various 
frequencies as shown in Fig. 2. This behaviour is 
almost similar to the C -V  measurements of 
A1/AI203/Si at substrate temperatures above 1000 ~ 
grown by low-pressure chemical vapour deposition 
(LPCVD) with the use of AI(CHa) 3 and N 2 0  as 
reported by Ishida et al. [16] and that of ordinary 
A1/SiOa/Si [20]. The thickness of the A120 3 gate 
insulator determined by C - V  measurements is about 
6 x  104nm, and this value is considered to be in 
reasonable agreement with the magnitude which was 
measured by the ellipsometer. 

In conjunction with Si-MIS capacitors, 1 MHz 
C-Vprofil ing at room temperature was carried out on 
similar InP (100)-MIS structures as shown in Fig. 3. 
Among many samples grown under different condi- 
tions, the A120 3 gate insulator of this sample was 
grown at an Ar gas flow rate of about 50 ml min-  1 
at 280~ for 10 rain. From the maximum accumul- 
ation capacitance of a single C -V  curve, the thickness 
of AI20 3 was determined to be approximately 
1.2 x 104 nm. The colour of the AtzO 3 gate insulator 
was pale blue. Since the expected colour of the A120 3 
has an immediate connection with refractive index 
and film thickness, the refractive index of the A1203 
was determined by the ellipsometer. Ellipsometer 
measurements have shown it to be about 1.55. 
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Figure 3 1 MHz AI/A1203/InP-MIS capacitance voltage curve. Sweep rate = 10 mV s -  1. 
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Figure 4 Interface state densities of the AI/AI203/InP-MIS system 
as a function of energy, obtained from DLTS measurements. 

However, because insulator/semiconductor inter- 
face qualities can be changed according to the growth 
methods and various kinds of insulators, the interface 
state densities of AlzO3/InP and A1203/Si structures 
were investigated by DLTS measurements. The inter- 
face state densities of A1/O3/InP were determined 
from DLTS measurements as shown in Fig. 4. The 
interface state density has been found to be approxi- 
mately 1012 eV-1 cm-2 at the middle of the energy gap. 
These values are comparable with those obtained 
from A1/SiO2/InP capacitors by Staa et al. [6] and 
Bogdanski et al. [21] in the energy range of about 
0.7 1.0 eV. This may be caused by carbon contamina- 
tion at the AI/Oa/InP interface or the A1203 insulator 
gates. Detailed studies on the A12Oa/InP interface will 

be presented in another publication. Also, the dis- 
tribution shapes of the interface state density at the 
A1203/Si structure determined from DLTS were sim- 
ilar to those at the AI203/InP structure, and it had 
an interface state density of approximately 
10 tt eV -1 cm -2 at the middle of the energy gap. 
Although this magnitude is somewhat higher than 
that of the high quality SiO2/Si structure, the value of 
the A1203/Si interface state density is sufficiently low 
for application in three-dimensional integrated cir- 
cuits and MIS devices [16, 22]. 

In addition to C - V  measurements at room temper- 
ature, capacitively coupled C - V  measurements were 
carried out to investigate the existence of impurities at 
the A1203/InP interfaces. The fundamental idea of this 
method is to couple capacitivety to the conduction 
layer through an AI203 layer by applying a mega- 
Hertz-range radiofrequency voltage to the pair of 
capacitive contacts on a chromium resistive gate [23]. 
The capacitive contacts of highly conducting alumi- 
nium of ~ 1 pm thickness are evaporated on the top 
surface of the resistive metal chromium gate layer of 

1 x 103 nm thickness. Backside contacts to the sub- 
strate of p-type InP were fabricated by Au-Zn diffu- 
sion at 450 ~ in a H 2 atmosphere for approximately 
10rain. The results of measurements on A1/Cr/ 
A1203/p-InP at 4.2 K are shown in Fig. 5. Even if such 
measurements at low temperature were not supposed 
to show any conductance as a result of the freezing- 
out of acceptors in the p-type bulk InP substrate, 
conductance varied depending on the applied gate 
voltage as shown in Fig. 5. However, it is impos- 
sible to determine unambiguously from the or-V meas- 
urements whether the origin of the carriers which 
contribute to some magnitude of conductivity is due 
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Figure 5 Conductance-voltage measurements on AI/Cr/AI203/InP at 4.2 K. 

5534 

(V) 

4 6 8 ,'0 



to the damage layer on the surface of the InP bulks, 
and is itself the sourceof conductivity, or whether a 
band of donor-like surface defects at energy above the 
conduction band edge cause conductivity variation of 
the p-type InP at AI203/InP interfaces. 

3. Summary and conclusion 
The present results of C - V  measurements at room 
temperature demonstrate clearly MIS behaviours for 
MOCVD samples with the A1203 gate insulator 
grown directly on HC1 vapour-etched p-Si and p-InP 
substrates via pyrolysis at 280-300~ from 
AI(O-C3HT) 3. The thickness of A1203 can be regu- 
lated by Ar flow rate and growth time to be in the 
range 104 7 x 104 nm. Ellipsometer measurements 
indicated that the refractive index was 1.55. The 
interface state density at the AlzO3/InP structure 
determined from DLTS has been found to be approxi- 
mately 1012 e g  -1 cm -2  in the energy range between 
about 0.7 and 1.0 eV, and that at the A1203/Si struc- 
ture has been observed to be about 10 ~ 1 eV- 1 cm- 2 at 
the middle of the energy gap. Conductance-voltage 
measurements with capacitive contacts and a resistive 
gate show increasing conductivity of the channel with 
positive gate voltages. Although some details remain 
to be clarified, these observations possibly have inter- 
esting device implication. With a p-type or low density 
n-type InP buffer layer it should be possible to pro- 
duce InP-MIS capacitors and InP-MISFET with 
high quality A1203/InP interfaces. Furthermore, 
A1203 insulator gates grown at low temperatures give 
good motivation for fabrication of InSb-MIS diodes 
and InSb-MISFET, and high quality A120 3 epitaxial 
films hold promise for buffer layers for the growth of 
epitaxial YBazCu307 thin films. 
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